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Prediction of groundwater levels (GWL) using machine learning 

techniques has gained substantial attention over the past few 

decades. Several researchers have reported the advances in this 

field and provided clear understanding of the state-of-the-art 

machine learning models implemented for GWL modeling. In this 

research, a new hybrid model based on artificial neural network 

approaches has been developed to estimate the groundwater level. 

For this purpose, three optimization algorithms, including wavelet, 

innovative gunner, and black widow spider, were employed for 

modeling the groundwater level. The study utilized statistical data 

from four piezometers in Kouhdasht Plain of Lorestan Province, 

Iran, as a case study over five combined scenarios of input 

parameters from 2002 to 2022. To evaluate the performance of the 

models, correlation coefficient, root mean square error, mean 

absolute error, and Nash-Sutcliffe efficiency coefficient were used 

as assessment criteria. Additionally, time series charts and box 

plots were employed to analyze the model results. The findings 

indicated that the combined scenarios in the models improved the 

model’s performance. Moreover, the evaluation results showed 

that the wavelet-support vector regression model exhibited higher 

accuracy than the other models across all the examined piezometric 

wells. Overall, the results demonstrated that the use of intelligent 

models based on the hybrid approach of artificial neural networks 

can be an effective factor in water resource management. 
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Introduction 

The groundwater level (GWL) is of critical 

importance, especially in arid and semi-arid 

countries. In many areas, the 

overexploitation of GWL has led to 

irreparable damage to the groundwater 

sources (Alfarrah and Walraevens, 2018; 

Bovolo et al., 2009; Priyan, 2021). 

Predicting GWL is a key challenge in 

hydrogeological investigations, effective 

aquifer management, and assessment of 

subterranean water volume (Sun et al., 2022; 

Barzegar et al., 2017). Hydrogeological 

studies have been conducted to estimate the 

potential of underground water, predict 

changes in the GWL, and examine the 

current state of underground water resources 

(Hay and Mimura, 2005; Russo and Taddia, 

2009). Empirical time series models have 

been extensively used to predict GWL levels 

(Eriksson, 1970). The ability of empirical or 

numerical models such as finite element 

groundwater flow system (FEFLOW) (Ma et 

al., 2022), modular finite-difference flow 

model (MODFLOW) (Hughes et al., 2022), 

and HydroGeoSphere (Kang et al., 2017) to 

estimate the GWL has made these models 

helpful in predicting the GWL (Trefry and 

Muffels, 2007; Wang et al., 2008; Brunner 

and Simmons, 2012).The prediction of GWL 

is crucial for sustainable water resource 

management, as accurate forecasts 

contribute to understanding the availability 

and distribution of groundwater, essential 

for purposes such as agriculture, drinking 

water supply, and ecosystem maintenance 

(Singh et al., 2021a; Pragnaditya et al., 2021; 

Khan et al., 2023). In recent years, due to the 

non-linear and complex nature of 

hydrogeological issues, models based on 

artificial intelligence approaches have been 

utilized. These models are inspired by the 

nature of living organisms and are capable of 

solving problems with great complexity and 

extent. These models have gained attention 

from researchers in the field of groundwater 

level prediction, which can be referred to 

with the following points: 

 Mirzania et al. (2023) developed a hybrid 

model combining artificial neural networks 

(ANN) with the Harris Hawk optimization 

algorithm to predict groundwater levels in 

the Shabestar plain. Using data from 21 

piezometric wells (2001–2019), their results 

demonstrated that integrating optimization 

algorithms with ANN significantly enhances 

model performance. Similarly, Saroughi et 

al. (2023) evaluated hybrid models—

Support Vector Regression (SVR) with the 

Badger algorithm and ANN with the Badger 

algorithm—for groundwater simulation in 

the Shabestar plain. Analyzing data from 20 

wells (2001–2022), they found that coupling 

intelligent models with optimization 

algorithms improves predictive accuracy. 

Mirboluki et al. (2024) compared multiple 

models—Long Short-Term Memory 

(LSTM), ANN, Grey Wolf-optimized ANN, 

and LSTM-Grey Wolf—for groundwater 

prediction in the Mashhad plain. Based on 

data from 86 wells, their study identified the 

Grey Wolf-optimized ANN as the top-

performing model. Feng et al. (2024) 

assessed traditional and deep learning 

models—including CNN, RNN, SVM, 

Decision Trees, Random Forests, and 

GAN—for groundwater forecasting in Izeh 

County, Khuzestan. Using precipitation, 

discharge, and extraction data (2018–2022), 

they concluded that Convolutional Neural 

Networks (CNN) outperformed other 

models. 

Elmotawakkil et al. (2024) tested Gradient 

Boosting Regression, SVR, Random Forest, 

and Decision Trees for groundwater 

estimation in Morocco’s Rabat plain. 

Incorporating GRACE/MODIS satellite data 

and environmental variables (e.g., 

temperature, soil moisture, vegetation 

index), their results highlighted Gradient 

Boosting Regression as the most accurate 

model. Artificial neural networks have 

proven effective for groundwater estimation, 

but recent advancements emphasize 

hybridizing ANN with metaheuristic 

algorithms to enhance performance. This 

study introduces a novel approach by 

integrating ANN with Wavelet Transform 

(WT), the Innovative Gunner algorithm, and 

the Black Widow Spider algorithm to predict 

groundwater decline in the Kuhdasht Plain, 

Lorestan Province. 
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The Kuhdasht Plain, classified as 

a prohibited plain due to severe depletion, 

faces critical challenges: 

 Excessive groundwater extraction for 

agriculture, drinking, and industry. 

 Illegal well drilling and climate change 

exacerbating resource depletion. 

 Land subsidence and well drying as 

direct consequences. 

While ANN models have been applied in the 

region, no prior research has explored the 

efficacy of Wavelet Transform, Innovative 

Gunner, or Black Widow Spider 

algorithms for groundwater prediction. This 

study aims to bridge this gap by: 

1. Developing hybrid ANN models coupled 

with the aforementioned algorithms. 

2. Evaluating their performance using 

climatic data, historical groundwater 

levels, and extraction records. 

3. Providing actionable insights for 

sustainable water resource management 

in Kuhdasht 
 

Materials and Methods 

Study Area 

The Kuhdasht Plain is one of the main 

aquifers located in the western part of the 

Lorestan Province at geographical 

coordinates 33°26′ to 33°36′ North and 

47°16′ to 47°27′ East. This plain has an area 

of 1,129 square kilometers and is one of the 

study areas of the Karkheh River Basin. The 

climate is relatively warm, with an annual 

precipitation of 443 millimeters. The 

groundwater table in this plain is of the 

unconfined type and is oval-shaped, located 

in alluvial deposits in the northern part of the 

study area. The extent of this aquifer is 

equivalent to 248.8 square kilometers, and 

the average altitude of the plains and 

mountains is 1,261 meters and 1,396 meters, 

respectively, with an overall average 

elevation for the entire study area of 1,360 

meters above sea level. The location of the 

study area is shown in Figure 1. 

 

Figure 1. Location of the study area in Lorestan Province of Iran  
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 In this research, data from four 

piezometric wells with long-term records 

and no missing data were utilized. For 

modeling, monthly parameters including 

precipitation §, temperature (T), 

groundwater level (H), and water extraction 

(q) were used, obtained from the Lorestan 

Regional Water Company for the period 

from 2002 to 2022. Of the data, 70% was 

used for modeling and model creation 

(training), while 30% was reserved for 

model validation and evaluation (testing) 

(Khosravi et al., 2018). Table 1 presents the 

geographical location of the studied 

piezometric wells, and Table 2 shows the 

statistical characteristics of groundwater 

levels in the studied piezometers.

 
Table 1. Geographical location of the study stations 

Number Name of Pizometers Longitude Latitude Elevation(m) 

1 Baghzal 47˚38' 57" 33˚33' 15" 1226 

2 Khoshnamvand 47˚41' 59" 33˚29' 33" 1209 

3 Olad Ghobad 47˚35' 21" 33˚33' 31" 1215 

4 Bogelan 47˚39' 52" 33˚28' 38" 1188 

 
 

Artificial Neural Network 

Artificial neural networks (ANNs) have 

become a fundamental tool in hydrology and 

water resource management (Hornik, 1998). 

A typical ANN structure comprises three 

layers: 

1. Input layer: Receives and preprocesses 

data 

2. Hidden layer(s): Performs computations 

through interconnected nodes 

3. Output layer: Produces the network's 

predictions 

The practical implementation of ANNs 

advanced significantly with multilayer 

perceptrons (Dehghani & Torabi Poudeh, 

2021). Research has demonstrated that 

feedforward networks using 

backpropagation learning algorithms with 

three-layer architectures can effectively 

solve complex engineering problems and 

model hydrological time series (Nourani et 

al., 2009). Common activation functions in 

these networks include sigmoid and 

hyperbolic tangent functions (Nourani et al., 

2011). Figure 2 illustrates this network 

architecture. 

 
 

Figure 2. General view of an artificial neural network 
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Wavelet Transform 

The Wavelet Transform is presented as an 

alternative method to the Short-Time Fourier 

Transform, designed to address limitations 

in frequency resolution inherent to the Short-

Time Fourier Transform. Similar to the 

Short-Time Fourier Transform, the signal of 

interest is divided into windows, with the 

wavelet transform applied separately to each 

window (Wang et al., 2000). The most 

significant distinction between these 

methods lies in the wavelet transform's 

ability to adapt both frequency resolution 

and window width (or scale) according to the 

frequency characteristics of the signal. 

Rather than operating solely on frequency, 

the wavelet transform functions on a scale 

basis, making it fundamentally a time-scale 

transformation. 

Through wavelet transform, high-scale 

analysis expands the signal, enabling 

detailed examination of its features, while 

low-scale analysis compresses the signal, 

facilitating the study of its broader 

characteristics. The term "wavelet," 

meaning "little wave," refers to a localized 

segment of the original signal where energy 

is temporally concentrated. Wavelet analysis 

decomposes a parent signal or time series 

into constituent wavelets of varying 

resolution levels and scales. These wavelets 

represent translated and scaled versions of 

the parent signal, characterized by finite-

duration oscillations and rapid decay 

(Noorani et al., 2018). This critical property 

of wavelet transform allows for effective 

local analysis of non-stationary and transient 

time series (Shin et al., 2005). 

The Algorithm of Innovative Gunner 

(AIG) 

The algorithm of innovative gunner is one of 

the latest meta-innovative optimization 

algorithms proposed by Pijarski & Kacejko 

(2019). The steps for implementing this 

algorithm are summarized as follows: 

1.Start the model at a starting point (the 

initial value for the first bullet determined 

randomly); 

2.Determine the firing distance (firing 

distance of the bullet from the gun to the 

target point); 

3.Calculate the produced bullet (the second 

bullet in the third stage taken from the 

first bullet); 

4.Check the possibility of a bullet hitting the 

target (the location shot - did the bullet hit 

the target correctly?); 

5.Select N random bullets as the main bullets 

(in case of hitting the target correctly); 

6.Check and update the position where the 

bullet hits the target (if the bullet hits the 

center of the target, the termination 

condition will be fulfilled and the work 

will be completed; however, if it does 

not, the initial value must be 

redetermined); 

7.Determine the best registered position; 

8. Finish. 

Figure (3) shows the general flowchart of the 

algorithm of the innovative gunner.
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Figure 3. General flowchart of the AIG 

 

 
Figure 4. General flowchart of the BWO 

 
Black Widow Optimization (BWO) 

This algorithm was first introduced by 

Sebastian and Peter (2009) based on the 

survival of the superiors or natural selection. 

In this algorithm, primary spiders mate and 

attempt to reproduce a new generation. The 

female black widow swallows the male mate 

during/after the mating process. Then, it 

carries the stored sperms in its sperm sack 

and releases them in its ovule sack. To solve 

an optimization problem, the values for 

variables must be identified in a proper 

structure. This structure is known as 

“chromosome” and “particle location” in 

genetic algorithm and particle swarm 

optimization, respectively, and “widow” in 

BWO. In the BWO algorithm, the potential 

solution to any problem is considered as a 

black widow spider. Figure (4) shows the 
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general flowchart of the algorithm of the 

black widow optimization. 

 

Evaluation Criteria 

In this study, the following evaluation 

indicators were used to evaluate the models 

under study for estimating groundwater 

levels. 

R=
∑ (xi-x̅) (yi-y̅)N

i=1

√∑ (xi-x̅)2 N
i=1 ∑  (yi-y̅)

2N
i=1

 1≤R≤1             (1) 

   

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  (x𝑖 − yi)

2𝑁
𝑖=1                     (2) 

    

𝑀𝐴𝐸 =
∑ |𝑥𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
                                      (3) 

𝑁𝑆 = 1 −
∑  (x𝑖−yi)2𝑁

𝑖=1

∑  (x𝑖−�̅�)2𝑁
𝑖=1

 ∞ ≤ 𝑁𝑆 ≤ 1         (4) 

In the above relations, R is the correlation 

coefficient, RMSE is the root mean square 

error in terms of m, NS is the Nash-Sutcliffe 

criterion, x_i and y_i are the observed and 

calculated values at the i-th time step, N is 

the number of time steps, x ̅ and y ̅ are the 

average of the observed and calculated 

values, respectively. In addition to the above 

criteria, scatter plots and time series of the 

observed-calculated values over time are 

also used for further comparison and 

analysis. 

 

Results and Discussion 

In this research, a hybrid artificial neural 

network model incorporating wavelet 

algorithms, the Innovative Gunner method, 

and the black widow spider optimization 

technique was employed to model 

groundwater levels in the Kouhshad Plain of 

Lorestan Province, Iran. The model utilized 

precipitation (P), temperature (T), and 

groundwater extraction (q) as input 

parameters, with groundwater level (H) 

serving as the output variable. Monthly data 

from 2012 to 2022 for four piezometric wells 

were analyzed. The fundamental objective 

of intelligent modeling approaches is to 

characterize relationships between variables 

where natural complexities create significant 

uncertainty. Groundwater level, being a 

crucial hydrogeological parameter, holds 

particular importance for future projections. 

This study employed advanced hybrid 

methods to minimize estimation errors and 

achieve high predictive accuracy using 

minimal input parameters, demonstrating 

superior performance compared to 

conventional approximation techniques. 

The primary research aim was to capture the 

inherent complexity among hydrological 

parameters and develop a robust predictive 

model. Given the paramount importance of 

groundwater levels among hydrogeological 

variables, this parameter was selected as the 

target output. For model development, the 

dataset was partitioned with 70% randomly 

selected for training and the remaining 30% 

reserved for testing, ensuring 

comprehensive coverage of data variability 

(Nagy et al., 2002; Kisi and Karhan, 2006). 

A critical modeling phase involves selecting 

optimal input variable combinations. In 

intelligent modeling frameworks, choosing 

appropriate initial inputs that effectively 

represent the underlying phenomena 

significantly enhances model performance. 

Accordingly, for groundwater level 

prediction, careful selection was made of the 

most representative observational data for 

training purposes (Dehghani et al., 2020). 

Multiple input parameter combinations were 

evaluated to identify the optimal 

configuration for groundwater level 

estimation, as detailed in Table 2. 

 

Table 2. Combinations of input variables for the selection of the best model 

Number Input Output 

1 P(t) H(t) 

2 T(t) H(t) 

3 P(t), T(t) H(t) 

4 T(t), P(t), q(t) H(t) 

5 T(t), P(t), q(t), H(t-1) H(t) 
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 To model the groundwater level, a hybrid 

artificial neural network model was 

employed, utilizing wavelet algorithms, 

Innovative Gunner and black widow spider. 

Additionally, different activation functions 

were used in the artificial neural network 

model, with the hyperbolic tangent function 

providing suitable accuracy compared to 

other functions. The artificial neural network 

model has tuning parameters, including 

weights and biases, which are typically 

selected randomly by the model in 

conventional models. However, today, 

optimization algorithms are used to predict 

these values to their best possible estimates 

in order to enhance model accuracy. In this 

research, values were estimated using 

wavelet algorithms, Innovative gunner, and 

black widow spider. Therefore, after 

entering the input parameters into the model 

and optimizing the tuning parameters, the 

structure of the hybrid model is formed, 

leading to the computational response of the 

model. Since the stopping criterion in 

training artificial intelligence models is 

based on the level of error, the model stops 

at the lowest possible error, resulting in the 

final output. 

 As shown in Table 3, hybrid models in 

scenario number 5, which includes all input 

parameters to the model, have less error 

compared to other scenarios. Therefore, 

increasing the number of effective 

parameters in hybrid models based on 

artificial neural networks leads to improved 

model performance. The results of the 

models examined in scenario number 5 are 

presented in Table 3. As indicated in the 

table, in all investigated wells, the artificial 

neural network-wavelet model demonstrated 

better performance. For instance, in the 

piezometric well of Baghzal, the highest 

correlation coefficient is 0.970, the lowest 

root mean square error (RMSE) is 0.231, the 

lowest mean absolute error (MAE) is 0.021, 

and the highest Nash-Sutcliffe efficiency 

coefficient is 0.980. Similarly, in the 

piezometric well of Khoshnamvand, the 

highest correlation coefficient is 0.970, the 

lowest RMSE is 0.177, the lowest MAE is 

0.091, and the highest Nash-Sutcliffe 

efficiency coefficient is 0.978. For the 

piezometric well of Bogelan, the parameters 

are the same: highest correlation coefficient 

of 0.982, lowest RMSE of 0.124, lowest 

MAE of 0.068, and highest Nash-Sutcliffe 

efficiency coefficient of 0.990. Finally, in 

the piezometric well of Olad Ghobad, 

similar results were observed with the 

highest correlation coefficient of 0.975, 

lowest RMSE of 0.195, lowest MAE of 

0.093, and highest Nash-Sutcliffe efficiency 

coefficient of 0.982. Overall, better 

performance was shown during the 

validation phase. In Figures 5-8, the time 

series chart of observed and computed 

values is shown. As observed, the artificial 

neural network-wavelet model demonstrates 

acceptable accuracy in estimating most 

points, including minimum, maximum, and 

median values, compared to the hybrid 

models of artificial neural network-

Innovative gunner, artificial neural network-

black widow spider, and the traditional 

artificial neural network. The artificial 

neural network-Innovative gunner model 

also shows good performance in estimating 

most points. However, the artificial neural 

network-black widow spider and the 

traditional artificial neural network have 

shown relatively satisfactory performance in 

estimating median values but performed 

poorly in estimating minimum and 

maximum values. In Figure 6, a box plot of 

the models under investigation is presented. 

As seen, the artificial neural network-

wavelet model shows better performance in 

estimating the first quartile and median 

values compared to the observational data, 

while the artificial neural network-black 

widow spider performed poorly, and the 

artificial neural network-Innovative gunner 

achieved satisfactory accuracy, ranking 

second. Figure 9 shows the box plots of the 

models under consideration. As can be seen, 

the WANN model shows better performance 

than the observed data in estimating the first 

quartile and median values, while the AIG-

ANN model has acceptable performance and 

ranks second. The BWO-ANN and ANN 

models, however, show poor performance. 

As shown in Figure 9, in the piezometric 

wells of Baghzal, Khoshnamvnd, Olad 

Ghobad, and Boogalan, the WANN model 

has performed well in estimating the first 

quartile, third quartile, and median values. 
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All models also have good accuracy in 

estimating the minimum and maximum 

values. The single ANN model also 

performed well in estimating the median 

values, but performed poorly in estimating 

the first and third quartiles. Therefore, 

according to this box plot, the new AIG-

ANN model has good accuracy in estimating 

the groundwater level. Therefore, the 

artificial neural network-wavelet model 

exhibits better performance than the other 

models under investigation, and these results 

are consistent with the studies of 

Zeidalinejad and Dehghani (2023) and 

Dehghani and Babaali (2023). Analyzing 

these results reveals that the superiority of 

this model is due to the wavelet transform, 

which divides the received signals into two 

categories: high-pass and low-pass. In the 

high-pass category, the resolution power is 

increased, allowing for the maximum values 

of the signal to be analyzed with satisfactory 

accuracy. The artificial neural network-

Innovative Gunner model combines 

continuous and discrete optimization, 

reducing the time to find an optimal solution 

in a broad search area by avoiding local 

optimum solutions. This makes the 

algorithm suitable for solving nonlinear 

problems in high dimensions with an 

appropriate convergence speed towards a 

satisfactory optimal answer. This 

characteristic results in this model having 

higher accuracy compared to other models. 

Overall, it is recommended to use the hybrid 

artificial neural network-wavelet and 

Innovative gunner model as a model with 

minimal error for solving nonlinear 

problems in high dimensions, with an 

appropriate convergence speed towards an 

optimal solution. It can also be considered a 

novel approach for predicting groundwater 

levels to make suitable management 

decisions for improving water resources. 
 

Table 3. Performance evaluation of models for simulation of piezometer wells 
Baghzal 

Model 
Training Testing 

R2 RMSE MAE NS R2 RMSE MAE NS 

WANN 0.945 0.422 0.235 0.960 0.970 0.231 0.021 0.980 

AIG-ANN 0.940 0.694 0.462 0.955 0.950 0.435 0.214 0.960 

BWO-ANN 0.920 0.876 0.683 0.930 0.935 0.654 0.324 0.940 

ANN 0.910 0.944 0.724 0.915 0.920 0.710 0.458 0.930 

 
Khoshnamvand 

Model 
Training Testing 

R2 RMSE MAE NS R2 RMSE MAE NS 

WANN 0.960 0.348 0.184 0.966 0.970 0.177 0.091 0.978 

AIG-ANN 0.935 0.593 0.345 0.942 0.955 0.336 0.154 0.962 

BWO-ANN 0.920 0.725 0.548 0.928 0.936 0.535 0.266 0.944 

ANN 0.910 0.915 0.722 0.917 0.925 0.706 0.357 0.932 

 
Olad Ghobad 

Model 
Training Testing 

R2 RMSE MAE NS R2 RMSE MAE NS 

WANN 0.955 0.393 0.211 0.962 0.975 0.195 0.093 0.982 

AIG-ANN 0.922 0.642 0.321 0.947 0.950 0.352 0.164 0.965 

BWO-ANN 0.915 0.853 0.432 0.934 0.937 0.525 0.277 0.947 

ANN 0.907 0.964 0.538 0.921 0.926 0.742 0.361 0.935 

 
Bogelan 

Model 
Training Testing 

R2 RMSE MAE NS R2 RMSE MAE NS 

WANN 0.965 0.237 0.118 0.974 0.982 0.124 0.068 0.990 

AIG-ANN 0.950 0.484 0.240 0.968 0.971 0.178 0.112 0.980 

BWO-ANN 0.932 0.636 0.322 0.947 0.946  0.397 0.950 

ANN 0.921 0.822 0.420 0.933 0.935 0.428 0.208 0.940 
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Figure 5. Time series plot of the Baghzal pizometer 



129                                                               Reza Chamanpira et al., / Environmental Resources Research 13, 1 (2025) 

 
  

Figure 6. Time series plot of the Khoshnamvand piezometer 
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Figure 7. Time series plot of the Olad Ghobad piezometer 
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Figure 8. Time series plot of the Bogelan piezometer 



Reza Chamanpira et al.,  / Environmental Resources Research 13, 1 (2025)                                                              132 

 
 

Figure 9. Box plot for the measured and predicted values 
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Conclusion 

Estimating groundwater levels using hybrid 

models based on artificial neural networks 

has proven to be an effective approach in 

hydrogeology. In this study, we evaluated 

the performance of a hybrid metaheuristic 

artificial neural network model for 

groundwater level estimation in the 

Kuhdasht Plain of Lorestan Province, Iran. 

The hybrid model integrated nature-inspired 

optimization algorithms—wavelet 

transform, the Innovative Gunner algorithm, 

and the Black Widow Spider algorithm—

with an artificial neural network framework. 

For the modeling process, precipitation (P), 

temperature (T), and groundwater 

withdrawal (q) were used as input 

parameters, while groundwater level (H) 

served as the model output. The dataset was 

partitioned such that 70% was allocated for 

model training and the remaining 30% for 

testing and validation. Model performance 

was assessed using statistical metrics, 

including the correlation coefficient (R), 

root mean square error (RMSE), mean 

absolute error (MAE), and the Nash-

Sutcliffe efficiency coefficient (NSE). 

Additionally, time series plots, box plots, 

and Taylor diagrams were employed to 

analyze the results.   

The findings revealed that across all tested 

models, incorporating additional input 

parameters improved groundwater level 

estimation accuracy. Evaluation of the 

hybrid models demonstrated that the 

artificial neural network–wavelet (ANN-

WT) model achieved the highest predictive 

accuracy with minimal error. The box plots 

and time series analysis further confirmed 

that the ANN-WT model produced estimates 

closely aligned with observed groundwater 

levels. In conclusion, this study highlights 

the efficacy of artificial intelligence–based 

models, particularly the hybrid ANN-WT 

approach, for groundwater level estimation. 

The methodology can be extended to other 

regions with long-term hydrological data, 

providing valuable insights for sustainable 

groundwater management and decision-

making.  
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