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This study was conducted to analyze and model the environmental impacts 
using artificial neural networks (ANNs) in wheat production systems. 
Information needed for this study, related to 2021-2022, data was collected 
from wheat farms in two parts of conventional and conservation cultivation 
in Qazvin province, Iran. Life cycle assessment using the ReCiPe 2016 
method reported three categories of damage to human health, ecosystem, 
and resources. The resource damage category for conventional tillage 
irrigation (76.05 USD2013) has significant pollution. The share of seed 
emissions, On-Farm emissions, and nitrogen emissions affect the 
categories of damage to human health, ecosystems, and resources, 
respectively. The results of ANN for environmental impacts in different 
wheat production showed the structure 9-8-3 with nine inputs, one hidden 
layer with eight neurons, and three output parameters have been 
determined as the best structure for conventional tillage irrigation. Also, 
rainfed wheat cultivation in conventional tillage showed 6-11-3 with six 
inputs, one hidden layer with eleven neurons, and three output parameters 
determined as the best structure. The best structure for irrigated cultivation 
of conservation tillage is 9-6-3. The suitable structure for rainfed 
cultivation in conservation tillage is 8-4-3, which has one hidden layer 
with four neurons. According to the results, the ANN can accurately 
predict the environmental effects of wheat production. By modeling the 
environmental effects, it can be found that in the future, sustainable 
production, will have a suitable plan to reduce environmental pollutants. 
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Introduction 
In recent years, efforts to make better use of 
energy resources have come to the attention 
of governments. The exponential depletion 
of fossil fuels has led to a shift towards 
renewable energy sources and sustainable 
development by increasing consumption 
and emissions (Ziaei et al., 2015). 

Renewable energy-based sustainable energy 
production is a challenging task to replace 
fossil fuels, achieve a cleaner environment, 
and challenge the uncertainty of fuel, 
intensive ecosystems, such as the 
agricultural sector, produce more than 
natural ecosystems, higher production is 
achieved only with the help of significant 
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amounts of auxiliary energy, which is 
consumed by human labor in planting, 
irrigation, fertilizer application, control and 
management of pest, diseases, and weeds 
(Ahmad et al., 2018). Wheat is the most 
important agricultural product in the world, 
but most of the land under wheat cultivation 
is located in arid and semi-arid regions 
(Ghasemi-Mobtaker et al., 2020). In its 
latest report on world agricultural 
production statistics, the FAO reported 
7584,358 hectares of area harvested and 
1978 kg ha-1 of wheat production in Iran 
(FAO, 2020). Agriculture has always been 
dependent on natural resources and 
therefore has complex relationships with 
the environment (Kashyap et al., 2021). 
Evidence suggests that the negative 
messages of these activities are due to 
increased input consumption, land use 
change, and tightening of agricultural 
operations. As a result of the intensification 
of environmental pollution, the destruction 
of natural habitats and the endangerment of 
biodiversity occur (Tilma et al., 2002). On 
the other hand, food production and related 
economic sectors depend on agricultural 
sustainability. Therefore, the efforts of 
researchers and scholars are to minimize 
the consequences of agricultural production 
in the context of economic benefits 
(Taherzadeh-Shalmaei et al., 2021). The 
ability to track the environmental impact of 
a product or process allows decision-
makers to adopt an appropriate policy for 
all identified environmental impacts (Wang, 
2011). Achieving this requires awareness of 
the various effects that the ecosystem of 
agricultural systems and their management 
methods have on the environment (Roy et 
al., 2009). Among the various methods of 
studying environmental impact, life cycle 
assessment is the most accurate approach 
that assesses all the environmental 
consequences of a product throughout the 
production chain. Also, life cycle 
assessment is a technique for evaluating all 
inputs and outputs of a product, process, or 
service, waste assessment, human health 
effects, and ecological effects, and 
interpreting evaluation results throughout 
the product or process life cycle (Kaab et al., 
2019a,b). This method has been considered 

by researchers and has been used around 
the world in recent decades (Houshyar and 
Grundmann, 2017). Life cycle assessment 
can examine the consequences during the 
process (Saber et al., 2020). This feature 
means that it not only evaluates the main 
stage of the process, but also assesses all 
the infrastructure, raw materials, resources, 
and energy required to carry out the process 
and all wastes, pollutants, materials, and 
energy produced (Rebitzer et al., 2003; 
Kaab et al., 2021). Along with scientific 
progress in human societies, agricultural 
mechanization is also affected by this 
movement and it is necessary to use 
scientific methods and tools in production 
planning. In this regard, forecasting fuel 
consumption in the production of various 
products is important. Appropriate 
solutions are necessary to reduce fuel 
consumption and having a suitable model 
will be easier and more transparent. In this 
study, an artificial neural network (ANN) 
also transfers the knowledge or law behind 
the data to the network structure by 
processing experimental data (Safa et al., 
2010). Ghorbani et al. (2011) investigated 
the energy ratio in wheat production in two 
irrigation systems (as a high input system) 
and dry farming (as a low input system) in 
the north of Khorasan province, Iran, were 
3.38 and 1.44, respectively. The results 
showed that the largest share of input 
energy in the irrigation system is allocated 
to chemical fertilizers (37.1%) and in the 
dry farming system, diesel fuel (45%) has a 
significant share. Total input energy for the 
production of irrigated wheat 45.3 GJ ha-1 
has been calculated, applying the right 
tillage methods and proper selection of 
agricultural implements are important 
factors. In this regard, reducing the amount 
of fuel consumed causes less pollution of 
the environment. An assessment of fuel 
consumption for wheat production in 
Turkey was performed. The total amount of 
fuel consumed was measured at 67.8 liters 
per hectare. The best preparation operation 
with 46.5 liters had the largest share 
(Canakci and Akinci, 2006). Safa and 
Tabatabaeefar (2011) evaluated the total 
fuel consumption in both irrigated and 
rainfed wheat cultivation systems. The 
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results showed that fuel consumption was 
598 and 74 liters per hectare for irrigated 
wheat and rainfed wheat, respectively. The 
highest share of fuel consumption in the 
irrigated wheat harvesting system is related 
to irrigation operations (78.4%) and the 
highest share of fuel consumption in the 
irrigated wheat harvesting system is 
allocated to the operation (59%). The 
analysis of ANN was used to predict fuel 
consumption by considering the social, 
geographical, and technical variables 
affecting wheat production. Among the 
studied variables, the amount of 
horsepower per hectare and the size of farm 
plots had the most and the least effect on 
fuel consumption, respectively. Researchers 
compared wheat bread production in 
conventional systems in terms of global 
warming potential by the life cycle 
assessment. The production of one kg of 
bread in the organic system produced 30 kg 
less CO2 equivalent than the conventional 
system (Meisterling et al., 2009). The 
environmental effects of winter wheat 
production systems at different levels of 
nitrogen consumption were studied based 
on life cycle assessment. Index with 
consumption of less than 150 kg N ha-1 was 
about 0.22 to 0.26 per ton of wheat grain. 
The results showed that at lower levels of 
nitrogen and high levels of nitrogen, land 
use, and eutrophication were the controlling 
factors of the life cycle assessment index, 
respectively. Also, acidification and global 
warming have been major environmental 
effects (Brentrup et al., 2004). Life cycle 
evaluation of the winter wheat and corn 
production system in China showed a 
reduction of fossil resources, climate 
change, acidity, eutrophication, and human 
and ecological toxicity of water and land 
systems. Winter wheat production caused 
more damage to the environment than corn, 
with a final environmental index of wheat 
of 0.063 and 0.40 for corn (Wang et al., 
2007).  
In this regard, assessing energy 
consumption due to the limited availability 
of fossil fuels is one of the necessary issues 
in the current era. The purpose of this study 
was to estimate the number of 
environmental impacts related to wheat 

production systems in different methods, to 
evaluate the environmental impact 
associated with input consumption, and 
provide applied suggestions for modeling 
emissions and sustainable management in 
agricultural systems by applying ANN. 
 
Materials and methods 
Data collection procedure 
Decreased soil fertility, soil compaction 
under the tillage layer, increased water and 
wind erosion, severe decomposition of soil 
organic matter, increased cost and energy of 
tillage operations, and increased labor costs 
are among the disadvantages of tillage 
(McGarry, 2003). Conservation tillage is 
another type of tillage in which plant debris 
remains as a cover on the soil surface. The 
purpose of conservation tillage is to 
stabilize production resources and improve 
yields in agriculture. Conservation tillage 
goals lead to the effective use of natural 
resources by combining soil, water, and 
biological resource management. Reducing 
the working hours of the tractor, reducing 
fuel consumption economically reducing 
environmental pollution, minimizing soil 
compaction, maintaining and storing soil 
moisture, and increasing organic matter are 
the benefits of tillage removal (Yalcin et al., 
2005). Wheat farms in two parts of 
conventional and conservation cultivation 
in Qazvin province, Iran were selected for 
research. The selection of farms was such 
to cover all the major production methods 
in the area in question. The characteristics 
of the farms and the additional information 
related to them are presented in Table 1. All 
management operations performed from 
seed preparation to harvest were recorded 
in the studied farms. To collect information 
about the type and amount of consumption 
of inputs and outputs, the number of 
samples was determined from Equation 1 
(Cochran, 1977).  
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Where N is the number of population, z is 
the reliability coefficient, p is the estimated 
proportion of an attribute that is present in 

the population, q is 1-p, and d is the 
permitted error ratio deviation from the 
average population. 

 
Table 1. Information on different wheat production systems 

Type of cultivation Type of tillage Number of farms Average area 
(ha) 

Average yield  
(kg ha-1) 

Irrigated Conventional 
Tillage 45 40 5000 

Rainfed Conventional 
Tillage 35 32 2500 

Irrigated Conservation 
Tillage 41 25 5100 

Rainfed Conservation 
Tillage 30 20 3000 

 
Life cycle assessment method  
The use of life cycle assessment as an 
environmental management tool in different 
ways and titles has been started since the 
1960s. This method estimates and evaluates 
all the resources used to produce the 
product and all the materials released to the 
environment through careful and audit 
(Tzilivakis et al., 2005; Ghasemi-Mobtaker 
et al., 2022). The purpose of evaluation life 
cycle in this study was to investigate the 
environmental effects of wheat production 
in different management systems. The 
scope is an expression of the framework in 
which the study is conducted and should be 
consistent with the objectives of the 
evaluation (Iriarte et al., 2010). It will not 
provide valid information without 
specifying the purpose and scope of the 
evaluation. The functional unit in this study 
was considered based on the production of 
one ton of seed yield. All inputs and 
outputs and environmental impacts were 
measured (Mouron et al., 2006).  
 
Inventory analysis 
This is the busiest and most time-
consuming stage in the life cycle 
assessment. The environmental impacts of 
the studied ecosystems, including emissions 
to the atmosphere, soil, and water, were 
estimated according to international 
standards (Jolliet et al., 2003). The source 
and reference of data collection play a very 
important role in the validity and 

completeness of the data. Information on 
agricultural products is available in the 
ecoinvent database used in this study 
(Renaud-Gentié et al., 2015).  
 
Impact assessment 
At this stage, the type of impact class is 
considered and the appropriate method is 
selected to evaluate the impact (Noya et al., 
2015). Implications into three main 
categories: resource consumption, human 
health-related consequences, and effective 
consequences on ecological issues (Pirlo et 
al., 2014). Acidification potential, global 
warming, eutrophication, photochemical 
oxidation, resource degradation, ozone 
degradation, toxicity, and fresh water use 
are the most widely used outcomes in this 
evaluation (Di Maria et al., 2016). The 
outcome category index means quantifying 
an outcome category. Indicators are 
calculated by different methods such as 
using mathematical relations and 
coefficients of the effect of each category. 
Each of the relations has been stated by 
different authorities (Ruviaro et al., 2012). 
Due to the importance of environmental 
issues in wheat production, some indicators 
of the effective category were estimated 
with different life cycle assessment models 
in SimaPro software. After studies on 
different models and a general comparison 
of results, the ReCiPe 2016 method was 
selected. Information about the deafening 
method can be seen in Figure 1. 
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Figure 1. Important categories in the ReCiPe 2016 method 

 
To calculate On-Farm emissions from the 
use of machinery, diesel fuel combustion, 
and chemical fertilizers, data are obtained 
according to Table 2, Table 3, and Table 4. 
The fuel must be clean and free of any 
contaminants. Most of the time, the 
pollution in the fuel occurs when it is not 

moved properly. Most contaminants include 
water, dust particles, and microbial growth 
particles that cause black sludge. Therefore, 
fuel quality plays an important role in 
proper operation, increasing service life, 
and controlling the emission of pollutants in 
engines (Soam et al., 2017). 

 
Table 2. The equivalent of direct emission of 1 MJ diesel fuel for 1 MJ burning in the ecoinvent 
database. 

Emission Amount (g MJ-1 diesel) 
Carbon dioxide (CO2) 74.5 
Sulfur dioxide (SO2) 2.41E-02 
Methane (CH4) 3.08E-03 
Benzene  1.74E-04 
Cadmium (Cd) 2.39E-07 
Chromium (Cr) 1.19E-06 
Copper (Cu) 4.06E-05 
Dinitrogen monoxide (N2O) 2.86E-03 
Nickel (Ni) 1.67E-06 
Zinc (Zn) 2.39E-05 
Benzo (a) pyrene 7.16E-07 
Ammonia (NH3) 4.77E-04 
Selenium (Se) 2.39E-07 
Polycyclic aromatic hydrocarbons (PAH)  7.85E-05 
Hydrocarbons (HC)  6.80E-02 
Nitrogen oxides (NOx) 1.06 
Carbon monoxide (CO) 1.50E-01 
Particulates (b2.5 μm) 1.07E-01 
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Table 3. Coefficients for calculating the On-Farm emissions related to the application of inputs 
in paddy production (IPCC, 2006). 

Characteristic Coefficient 
(Emission result) 

A. Emissions of fertilizers 

1 ቈ
[kg Nଶ O − N]

kg N୧୬ ୤ୣ୰୲୧୪୸ୣ୰ୱ ୟ୮୮୪୧ୣୢ
቉ ቈ

[kg Nଶ O − N]
kg N୧୬ ୤ୣ୰୲୧୪୸ୣ୰ୱ ୟ୮୮୪୧ୣୢ

቉ 0.01 (to air) 

2  0.1 (to air) 

3  0.001 (to air) 

4 ቈ
[kg NOଷ

ି − N]
kg N୧୬ ୤ୣ୰୲୧୪୸ୣ୰ୱ ୟ୮୮୪୧ୣୢ

቉ ቈ
[kg NOଷ

ି − N]
kg N୧୬ ୤ୣ୰୲୧୪୸ୣ୰ୱ ୟ୮୮୪୧ୣୢ

቉ 0.1 (to water) 

5  0.02 (to water) 

6  0.21 (to air) 

 
B. Conversion of emissions 

1 Conversion from kg CO2 – C to kg CO2  

2 Coversion from kg N2O – N2 to kg N2O  

3 Conversion from kg NH3 - N to kg NH3  

4 Conversion from kg NO3 - N to kg NO3  

5 Conversion from kg P2O5 to kg P  

   
C. Emissions from human labor 

1  0.7 (to air) 
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Table 4. Coefficients for calculating the On-Farm emissions to the soil of heavy metal related to 
the application of chemical fertilizers in paddy production (Mostashari-Rad et al., 2021). 

Characteristic Heavy metals 
Cd Cu Zn Pb Ni Cr Hg 

1  6 26 203 5409 20.9 77.9 0.1 

2  90.5 207 1923 154 202 1245 0.7 

3  0.2 8.7 11.3 1.5 4.5 10.5 0.1 

 
 Interpretation of results 
The results of the life cycle inventory (LCI) 
and life cycle impact Assessment (LCIA) 
are done to conclude in the last stage. 
Interpretation findings may be used as 
conclusions and recommendations for 
decision-makers according to the purpose 
and scope of application. Life cycle 
interpretation also aims to provide an 
understandable, complete, and consistent 
expression of the results of a life cycle 
assessment following the definition of the 
purpose and scope of this study (Iriarte et 
al., 2010).  
 
ANN model 
Inspired by the neural network of the 
human brain, this network seeks to develop 
information processing. By processing 
experimental data, ANNs transfer 
knowledge or the law behind the data to the 
network structure, which is called learning. 
The ability to learn is the most important 
feature of an intelligent system. A learning 
system is more flexible and easier to 
program. So it can better answer new 
problems and equations (Momenzadeh et 
al., 2011). Multilayer perceptrons (MLPs), 
are widely studied and used, especially for 
supervised learning difficulties. MLP is a 
hierarchical structure of several perceptrons 
that does not have the limitations of single-
layer networks and learns the mapping of 
nonlinear functions. MLP consists of at 
least three node layers. It has one input 
layer, one hidden layer, and one output 
layer. All nodes except the input nodes are 

neurons that use a nonlinear activation 
function. MLP uses a supervised learning 
technique for training. Multiple layers and 
nonlinear activation distinguish it from a 
linear perceptron (Kaastra and Boyd, 1995). 
The input elements (ai) and weight (wij), 
together with the bias (bj), accumulate in 
the nodes (Equation 1). After imposing the 
transfer function F to X, an output is 
generated (Equation 2). The two topics 
discussed include weight and bias. A set of 
weighted inputs allows each neuron or 
artificial node in the production system to 
generate the corresponding outputs. 
Artificial intelligence projects typically use 
internal neural networks that represent 
weight as a function of biological systems 
and technologies. A bias node in a neural 
network is a node that always exists. If the 
weights are selected correctly, their values 
must be multiplied by the inputs. The 
values obtained pass through the output 
function. Input variables (such as energy 
equivalents of electricity, sugarcane cutting 
plant, biocides, fertilizers, diesel fuel, 
human labor, and machinery) were 
considered as the input of MLP neural 
networks. Also, the three environmental 
impact categories were as outputs. The aim 
was to obtain the appropriate model with 
the best weight between the input nodes and 
the hidden layers and between the hidden 
and output layer nodes. Optimal weights are 
obtained through a hidden layer neural 
network training algorithm. Then, unipolar 
sigmoid, which is one of the features of 
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these functions, was used (Equation 3) 
(Kaab et al., 2019a). 

ݔ = ൭෍ ௜௝ܽ௜ݓ

௡

௜ୀଵ

൱ + ௝ܾݔ
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Model performance evaluation 
The prediction accuracy of ANN models 
was measured by calculating the root mean 
square error (RMSE) and the coefficient of 
determination (R2), using Equations (4 - 5) 
respectively. 

   
n
1RMSE 2 
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SimaPro V9.1.1.1 software is used to 
perform analysis on life cycle assessment, 
and Matlab software is employed in 
developing an ANN model for the 
prediction of environmental impacts in 
wheat cultivation. 

Results and discussion 
Life cycle assessment analysis 
Equivalents related to each of the inputs 
(water, air, and soil) are estimated and 
calculations are performed in SimaPro 
software. Table 5 shows the results of the 
second phase of the Life cycle assessment. 
Emissions of carbon dioxide from diesel 
fuel are significant in conventional tillage 
irrigation (562.56 kg). Conservation tillage 
has less environmental emissions because 
fewer machines are used. In addition to 
diesel fuel, nitrogen fertilizer also emits 
environmental emissions into the air. NH3 
has an emission of 18 to 1790 kg. Nitrates 
and phosphates from chemical fertilizers 
contaminate water. Nitrate emissions are 
higher than phosphate. Improving the 
efficiency of nitrogen uptake by plants can 
lead to a reduction in nitrogen leaching, 
which directly and indirectly reduces N2O 
emissions from excess nitrogen in the soil 
(Smith et al., 2007). Carbon dioxide 
emissions from human labor are less than 
carbon dioxide emissions from diesel fuel. 
Heavy metal emissions to soil were 
reported, and Lead and zinc have 
significant emissions to the soil. It should 
be noted that greenhouse gas emissions due 
to their special radiative properties cause 
abnormal global warming, which in turn 
changes the global climate and the region 
(Pennington et al., 2004). Consumption of 
fossil fuels has the greatest impact on the 
emission of greenhouse gases, especially 
CO2, and consequently global warming. 
Therefore, saving fuel consumption during 
operations not only reduces costs and 
conserves national resources, but also 
reduces the destructive effects of the 
environment and global warming, and 
climate change (Martin et al., 2006; 
Sivakumar et al., 2005). 
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Table 5. Indirect and direct emissions of different production of wheat in the Qazvin province 
of Iran based on 1 ha. 

Item (unit) 
Conventional 

Tillage Conservation Tillage 

Irrigated Rainfed Irrigated Rainfed 
A. Indirect emissions     
a. Inputs     
1. Human labor (hr) 90.80 40.00 75.00 38.00 
2. Machinery (kg) 22.44 12.00 15.00 10.00 
3. Diesel fuel (L) 134.10 90.00 80.00 50.00 
4. Nitrogen (N) (kg) 340.00 150.00 250.00 200.00 
5. Phosphate (P2O5) (kg) 200.00 0.00 100.00 100.00 
6. Potassium (kg) 100.00 0.00 100.00 50.00 
7. Farmyard manure (kg) 700.00 400.00 500.00 300.00 
8. Biocides (kg) 7.00 4.00 8.00 6.00 
9. Electricity (kWh) 400.00 0.00 235.00 0.00 
b. Output      
1.  Wheat (kg) 5000.00 2500.00 5100.00 3000.00 
B. Direct emissions     
1. Emissions by diesel fuel to air (kg)     
(a). Carbon dioxide (CO2) 562.56 377.55 335.60 209.75 
(b). Sulfur dioxide (SO2) 0.18 0.12 0.10 0.06 
(c). Methane (CH4) 0.02 0.015 0.013 0.008 
(d). Benzene 0.001 8E-04 7E-04 0.0004 
(e). Cadmium (Cd) 1.8E-06 1.2E-06 1.1E-06 7E-06 
(f). Chromium (Cr) 9E-07 6E-06 5.4E-05 3.4E-05 
(g). Copper (Cu) 0.0003 2E-04 1.8E-04 0.0001 
(h). Dinitrogen monoxide (N2O) 0.02 0.014 0.012 0.008 
(i). Nickel (Ni) 1.2E-05 8.5E-05 7.5E-04 4.7E-06 
(j). Zinc (Zn) 1.8E-04 1.2E-04 0.0001 6.7E-04 
(k). Benzo (a) pyrene 5.4E-04 3.6E-04 3.2E-06 2E-06 
(l). Ammonia (NH3) 0.003 0.002 0.002 0.001 
(m). Selenium (Se) 1.8E-06 1.2E-05 1.1E-06 7E-06 
(n). Polycyclic aromatic hydrocarbons (PAH)  5.9E-04 3.9E-04 0.0003 0.0002 
(o). Hydrocarbons, unspecified (HC) 0.51 0.34 0.30 0.19 
(p). Nitrogen oxides (NOx) 8.00 5.37 4.77 2.98 
(q). Carbon monoxide (CO) 1.13 0.76 0.67 0.42 
(r). Particulates (b2.5 μm) 0.80 0.54 0.48 0.30 
2. Emissions by fertilizers to air (kg)     
(a). Ammonia (NH3) by FYM 170 97.14 121.42 72.85 
(b). Ammonia (NH3) by chemical fertilizers 41.28 18.21 30.35 24.28 
3. Emissions by fertilizers to water (kg)     
(a). Nitrate 45.17 19.92 33.21 26.57 
(b). Phosphate 4.36 0.00 2.18 2.18 
5. Emission by N2O of fertilizers and soil to air (kg)     
(a). Nitrogen oxides (NOx) 71.40 31.50 52.5 42 
6. Emission by human labor to air (kg)     
(a). Carbon dioxide (CO2) 63.56 28 52.5 26.6 
7. Emission by heavy metals of fertilizers to soil (mg)     
(a). Cadmium (Cd) 20160 900 10570 10260 
(b). Copper (Cu) 51110 3900 28070 26335 
(c). Zinc (Zn) 454750 30450 244180 233465 
(d). Lead (Pb) 1870010 811350 1367800 1097275 
(e). Nickel (Ni) 47956 3135 25875 24605 
(f). Chromium (Cr) 276536 11685 145025 140605 
(f). Mercury (Hg) 184 15 105 95 
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Life cycle assessment results were 
calculated by SimaPro software, according 
to the selected method, and three types of 
damage categories were reported in Table 6. 
The category of human health damage for 
conventional tillage irrigation (0.07 DALY) 
has more environmental emissions than the 
other three methods. Ecosystem 
environmental emissions were reported in 
terms of one ton of wheat. The total 
conservation tillage publications (11.37E-
05 species. yr) is less than the total 
conventional tillage publications (12.54E-
05 species. yr). The resource damage 
category showed that the environmental 

emissions of irrigated conservation tillage 
(50.26 USD2013) are negligible. The most 
important materials with the potential for 
acidification in ecosystems are sulfur 
dioxide and nitrogen oxides, which are 
mainly produced by the consumption of 
fossil fuels during agricultural production. 
However, ammonia from chemical 
fertilizers in the field is also an important 
cause of acidification (Engström et al., 
2007). Another study in Germany reported 
that the production of a ton of wheat acidity 
and global warming were major 
environmental effects (Brentrup et al., 
2004).

 
Table 6. Values of the environmental impact per one ton in different production systems of 
wheat. 

Impact categories Unit Conventional Tillage                Conservation Tillage 
Irrigated Rainfed Irrigated Rainfed 

Human health DALY a 0.07 0.02 0.04 0.06 
Ecosystems species. yr b 7.7E-05 4.84E-05 4.91E-05 6.46E-05 
Resources USD2013 76.05 56.70 50.26 59.01 
a DALY: disability-adjusted life years. Damage of 1 is equal to the loss of 1 life year of 1 individual, or 
1 person suffers 4 years from a disability with a weight of 0.25. 
b species. yr: the unit for ecosystems is the local species loss integrated over time. 

 
Figure 3 shows the share of 

environmental emissions of each input. 
Seeds used for 4 methods of wheat 
cultivation have a great impact on the 
category of damage to human health. Less 
than 5% of human health emissions are due 
to nitrogen fertilizers and On-Farm 
emissions. Nitrogen fertilizer (25%) has the 

lowest share of environmental emissions in 
irrigated conservation tillage. More than 60% 
of ecosystem damage emissions are due to 
On-Farm emissions. Diesel fuel 
consumption and phosphate fertilizer affect 
the resource damage category. Electricity 
emissions are visible in irrigated wheat 
cultivation.
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Figure 3. Contribution of different inputs in the damages categories for different  
production of wheat. 
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ANN analysis 
To achieve the best neural network 
structure, different numbers of structures 
with one and two layers and with several 
neurons from one to 30 in the hidden layer 
have been trained, tested, and validated, 
also among the training algorithms used in 
this research, Levenberg–Marquardt 
training algorithm was selected. From the 
dataset used in this model, 70% of the data 
were considered for network training, 15% 
of the data for the validation test, and 15% 
for the test. The statistical measures of the 
most accurate ANN models in predicting 
environmental impact for different 
production of wheat are shown in Table 7. 
Based on the modeling results for 
environmental impacts, the structure 9-8-3 
with nine inputs, one hidden layer with 8 
neurons, and 3 output parameters has been 
determined as the best structure for 
conventional tillage irrigation. As a result, 
rainfed wheat cultivation in conventional 
tillage showed 6-11-3 with six inputs, one 
hidden layer with eleven neurons, and 3 
output parameters determined as the best 
structure. The best structure for irrigated 
cultivation of conservation tillage is 9-6-3. 
The suitable structure for rainfed cultivation 
in conservation tillage is 8-4-3, which has 
one hidden layer with four neurons. Results 
on MAEP, RMSE, and R2 are computed for 
the networks, it can be observed that values 
of R2 vary in ranges of 0.870 to 0.945 
overall, 0.910 to 0.946 for the training 
stage, and 0.863 to 0.916 for the testing 
stage in conventional tillage irrigated. In 
conventional tillage rainfed, the 
corresponding values are 0.940 to 0.980 
overall, 0.882 to 0.996 for the training 
stage, and 0.846 to 0.982 for the testing 
stage. In conservation tillage irrigated, 
values are 0.892 to 0.961 overall, 0.913 to 
0.967 for the training stage and 0.874 to 
0.936 for the testing stage. In conservation 
tillage rainfed, 0.852 to 0.972 overall, 0.893 
to 0.989 for the training stage and 0.883 to 
0.987 for the testing section.  Sensitivity 
analysis is the study of the influence of the 
output variables on the input variables of a 
statistical model. In other words, it is a 

method to change the inputs of a statistical 
model in an organized way so that the 
effects of these changes can be predicted on 
the output of the model. Nitrogen fertilizer 
input had the highest amount of sensitivity 
among other inputs and it was known as the 
most sensitive input in different tillage 
systems of wheat production in determining 
the environmental effects. 

Studies in this area including Rahman 
and Bala (2010) in predicting the dry matter 
content of hemp in Bangladesh, 
Mohammadi et al. (2010) in predicting the 
performance of kiwifruit production in Iran, 
and Safa and Samarasinghe (2011) in 
evaluating energy consumption modeling in 
wheat production. The trend of energy 
consumption on basil products was 
discussed using MLP. The best topology 
was fitted with 7 neurons in the input layer, 
and 1 neuron in the output layer as 7-20-20-
7. The values of R2 and the root mean 
square error (RMSE) were calculated to be 
0.976 and 0.046, respectively (Pahlavan 
Bidgoli,  2011). In other studies, 
Khoshnevisan et al. (2014) predicted potato 
yield using ANN. Structures 2-8-12 and R2 
(0.99) were selected as the best grid for 
energy consumption. Khanali et al. (2017) 
developed ANN models to estimate 
environmental impact categories and yield 
in tea production with R2 values from 0.878 
to 0.990. Elhami et al. (2017) employed an 
ANN model to predict environmental 
impact categories and yield of lentil 
cultivation. The selected ANN architecture 
consisted of two hidden layers with nine 
neurons in the input layer, ten and six 
neurons in the hidden layers, and eleven 
neurons in the output layer. Chen and Jing 
(2017) predicted the yield by using ANN, 
and, MAPE (in %), RMSE, and R2 were 
found to be 10.38%, 979 kg ha−1, and 0.61, 
respectively. in the testing phase. Due to the 
use of training rules, the ANN can predict 
the environmental impacts of the product 
with more accuracy and less error. Kaul et 
al. (2005) predicted the yield of soybeans 
and corn in the United States using average 
rainfall at different periods of crop growth.
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Table 7. The results of different model arrangements by ANN in different production of wheat. 
Types of 

production 
Items of the ANN 

model 
Statistics 
indices 

Independent variables  
Human 
health Ecosystems Resources The best 

structure 

Conventiona
l Tillage 
Irrigated 

Overall 
R2 0.930 0.870 0.945 

9-8-3 

RMSE (%) 0.380 0.430 0.160 
MAPE (%) 0.080 0.549 0.871 

Train 
R2 0.910 0.946 0.963 

RMSE (%) 0.248 0.147 0.116 
MAPE (%) 0.042 0.180 0.009 

Test 
R2 0.863 0.916 0.890 

RMSE (%) 0.341 0.074 0.036 
MAPE (%) 0.038 0.540 0.740 

Conventiona
l Tillage 
Rainfed 

Overall 
R2 0.940 0.982 0.964 

6-11-3 

RMSE (%) 0.221 0.136 0.119 
MAPE (%) 0.089 0.084 0.074 

Train 
R2 0.976 0.882 0.986 

RMSE (%) 0.256 0.352 0.364 
MAPE (%) 0.008 0.009 0.004 

Test 
R2 0.978 0.846 0.982 

RMSE (%) 0.215 0.217 0.289 
MAPE (%) 0.048 0.076 0.138 

Conservatio
n Tillage 
Irrigated 

Overall R2 0.892 0.914 0.961 

9-6-3 

 RMSE (%) 0.365 0.397 0.471 
 MAPE (%) 0.084 0.074 0.096 

Train R2 0.967 0.943 0.913 
 RMSE (%) 0.371 0.412 0.369 
 MAPE (%) 0.012 0.038 0.068 

Test R2 0.936 0.874 0.910 
 RMSE (%) 0.356 0.210 0.478 
 MAPE (%) 0.025 0.036 0.087  

Conservatio
n Tillage 
Rainfed 

Overall R2 0.963 0.852 0.973 

8-4-3 

 RMSE (%) 0.321 0.478 0.524 
 MAPE (%) 0.049 0.078 0.072 

Train R2 0.989 0.964 0.893 
 RMSE (%) 0.341 0.521 0.298 
 MAPE (%) 0.036 0.089 0.042 

Test R2 0.921 0.883 0.987 
 RMSE (%) 0.361 0.695 0.247 
 MAPE (%) 0.036 0.089 0.048 

 
Conclusions 
In this study, estimation of environmental 
emissions from life cycle assessment 
showed that irrigated cultivation of 
conservation tillage has minimal pollution. 
In modeling with ANN, the structure 9-8-3 
has been determined as the best structure 
for conventional tillage irrigation. Also, 
rainfed wheat cultivation in conventional 
tillage showed 6-11-3 as the best structure. 
The best structure for irrigated cultivation 

of conservation tillage is 9-6-3. The suitable 
structure for rainfed cultivation in 
conservation tillage is 8-4-3. R2 and RMSE 
related to this product have the highest 
possible accuracy. According to this 
research, the following suggestions can be 
recommended for optimizing environmental 
impacts in agricultural products: The use of 
modern technologies and suitable 
agricultural implements such as a multi-
purpose machine (combine). As a result, 
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time constraints due to climate change and 
rainfall are removed during seed 
preparation and seed sowing. Frequent 
movements of the tractor and its associated 
equipment to carry out agricultural 
operations reduce the compaction of the 
farm soil and the creation of an 
impermeable layer. Finally, tractor 
depreciation and high fuel consumption are 
reduced due to the reduction of the number 
of vehicles during field operations. The use 
of protection systems that require less 
mechanization and power. Execution of 
primary tillage operations (plowing) when 

the soil moisture is adequate, will have a 
significant effect on reducing 
environmental pollution. Therefore, it is 
recommended that plowing be done as soon 
as possible after harvesting. Electrification 
of the irrigation engine and increasing the 
efficiency of transmission and distribution 
of consumed irrigation water at the field 
level, is a suitable solution to reduce the 
consumption of emissions. Development of 
agricultural mechanization and handing 
over of advanced tractors to farmers by 
paying subsidies to farmers and causing 
worn machinery. 
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